
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ABSTRACT 
 

This paper presents a method to model variability in architectural parameters 
and predict the resultant uncertainty in the mechanical properties of a SiC/SiC 
ceramic matrix composite system. Using micrographs of three specimens, the 
relative importance of these architectural parameters on the mechanical properties is 
also identified. Both finite element analysis and an analytical method (Selective 
Averaging Method) are used. Response surfaces are used to relate the high-fidelity 
finite element analysis and the low-fidelity Selective Averaging Method. Various 
response surfaces are evaluated and used to obtain a large number of results in a 
relatively short amount of time (compared to using finite element analysis alone). 
The results reveal that modeling the random variation in all architectural parameters 
in a way that mimics the actual variation in the composite is important in order to 
obtain a satisfactory representation of the variability in the stiffness properties of 
the composite. 
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INTRODUCTION 
 

Woven ceramic matrix composites (CMCs) such as SiC/SiC are candidate 
materials for future hypersonic vehicle systems such as thermal protection systems 
and aero-propulsion systems. Preliminary testing of these materials indicates that 
there is considerable variability in their thermal-mechanical properties such as 
Young’s moduli and Poisson’s ratios. One feature contributing to the properties’ 
variability is the microstructural variability as discussed below. Hence it would be 
desirable to characterize the uncertainties. However, it is difficult to predict the 
variability in mechanical properties due to the architectural randomness in woven 
CMCs. The fabrication of these composites involves a complex multi-step process. 
The variability in the properties is due to uncertainties encountered at various stages 
of manufacturing, as well as variation within the constituents themselves [1,2]. 
Some of these uncertainties include constituent volume fractions, tow size, and tow 
spacing. In addition, due to the nature of the manufacturing, the SiC/SiC composite 
is known to have a large percentage of porosity that introduces further uncertainty 
[3].  

Conventional design methodologies account for the aforementioned 
uncertainties by use of a safety factor, which may not allow a designer to take full 
advantage of the composite properties because the details of the microstructure are 
not rigorously accounted for. More recently other methods of accounting for the 
uncertainties have been explored. Some of these methods include a multi-level 
approach in which relationships are developed that link the lowest level 
(unidirectional composite) to the mid-level (woven composite), and finally to the 
highest level (laminated woven composite) [4]. While this approach may be 
effective in determining mechanical properties, it does not explicitly account for the 
effects of pore size, shape, and location along with other microstructural features 
which should not be neglected. The importance of accounting for these factors 
explicitly has recently been studied in a qualitative sense [5].  However, there is still 
a need to account for these factors in a quantitative sense. Additional analytical 
approaches accounting for certain details such as waviness or constituent volume 
fractions have also been developed, but again do not model porosity explicitly [6,7]. 
While these approaches may work very well for some woven composites, it is likely 
that they cannot adequately represent the SiC/SiC system.  

Another approach is a nondeterministic approach in which uncertainties at the 
constituent level are used to determine the variability in mechanical properties. The 
advantage of probabilistic techniques is that they account for variation in a more 
realistic manner that may lead to a more efficient design. Such nondeterministic 
approaches require complete characterization of uncertainties in the composite. 
Thus there is a need to develop efficient methods to propagate the uncertainties 
from the primitive variables, e.g., fiber and matrix properties and porosity, to the 
response variables such as the stiffness of the composite material [8]. CMC’s have 
been analyzed in a probabilistic manner in the past. However, this typically 
involved a “smearing” of the porosity into the matrix properties [2]. This 
assumption does not account for the size, shape, and the interaction of the voids 
with one another which can affect the mechanical properties. Additionally, 
variability in the microstructure was estimated, rather than rigorously quantified. 



A methodology is presented for modeling the uncertainty in architectural 
parameters of a 5HS CVI (five harness satin weave, chemical vapor infiltrated) 
SiC/SiC composite, using micrographs of three specimens to identify the important 
parameters and their distributions. These are then used to perform Monte Carlo 
simulations of possible architectural variants. Analytical and finite element 
micromechanics simulations are then utilized to predict the scatter in mechanical 
properties. The Selective Averaging Method (SAM), an analytical method based on 
iso-stress and iso-strain assumptions, is used to analyze a large number of 
simulations that are corrected with a response surface based on the finite element 
results [9]. This is important because finite element analysis may not always be a 
feasible approach if a large number of samples are necessary to obtain an 
acceptable statistical representation of the results. A comparison is also made with a 
method in which no correction response surface (CRS) is used, but rather a linear 
high fidelity response surface of the finite element results. The uncertainty is 
parameterized based on measurable variables within the architecture to gain an 
understanding of the causes of variation in the mechanical properties. The results 
from this study are used to determine the sensitivity of response variables to several 
architectural parameters, as well as the expected distribution in mechanical 
properties due to these parameters. 

 
 
ANALYSIS METHODS 
 
Model Development and Description 
 

The microstructure of the 5HS CVI SiC/SiC composite has been shown to have 
significant randomness. This results in high variability in the mechanical properties 
as well. A 2D image of one cross section of the composite, obtained by Bonacuse, 
et al. [10] is shown in Figure 1. The black area represents voids, which vary in 
location, size, and shape. Other 2D cross sections are not identical to the one 
shown, but rather, exhibit different random distributions of the voids and the 
microstructural characteristics such as tow size, shape, and spacing [10]. For this 
reason, it is difficult to define a representative volume element (RVE) that takes all 
of this variability into account. Therefore, some simplifying assumptions, explained 
in the following paragraphs, were made to develop an understanding of the 
composite at a basic level.  

For this work, the focus was on modeling a RVE of the 5 HS composite rather 
than taking the lay-up of the composite into account, in order to keep the size of the 
problem tractable while developing the appropriate analysis methods. Hence, two 
architectural variations - ply shifting and tow nesting - that vary throughout the 
composite are not accounted for with the current RVE. Another feature that the 
current RVE does not capture is the non-uniform distribution of matrix. It is 
apparent in Figure 1 that the thickness of the matrix is much higher on the outside 
than on the inside of the composite. This is the nature of the current manufacturing 
process. All of these aspects that are currently being neglected will come into 
consideration in future work.  

While there are a few architectural variations not captured by the current RVE, 
there is still a lot to learn from the parameters that are captured by the RVE used for 



 
 

Figure 1: 2D cross section of the SiC/SiC composite microstructure 
 

 
 

 
Figure 2: Example of a randomly generated RVE  

 
 
this work and shown in Figure 2. Since this is a 5 HS weave, the RVE was defined 
as having five transverse tows that are aligned in such a way that they follow the 
sinusoidal curve of the longitudinal tow which runs continuously lengthwise across 
the cross section. This longitudinal tow, shown in blue, is held fixed for all analyses 
because there is currently no statistics available on its variation. The transverse 
tows, shown in green, are modeled as ellipses. The matrix, shown in red, is assumed 
to grow uniformly on the tows (the matrix thickness is the same on all tows, except 
where there is overlap) until a given matrix volume fraction is reached. This allows 
for the voids to be explicitly modeled in that the images seen are a result of the 
matrix growing on imperfectly sized and imperfectly aligned tows, which is a factor 
inherent in the production of voids.  

Since the actual composite does continue “through the page” as it does in the 
longitudinal direction, a plane strain assumption is appropriate. It is important to 
note that it is assumed that every aspect of the 2D image is being extruded through 
the paper. Therefore, tow undulation and a closure of voids (rather than tunnels) is 
being neglected. For this reason, the modulus in the “through the page” direction is 
not accurate. It is expected that the true modulus will be more like that of the 
longitudinal direction.  

Another important model characteristic to note is that the constituents are 
considered to be homogeneous. When percent void and percent matrix are being 
referred to, the porosity and the matrix volume fractions within the tow are not 
being accounted for. For example, the composite has a tow volume fraction of 60%. 
The tows, however, have their own fiber, matrix, and void volume fractions that are 
homogenized and referred to as the tow properties. It can be said then, that the 
volume fractions displayed represent inter-tow volume fractions. 

In summary, the geometry and material properties of the transverse tows, the 
longitudinal tows, the matrix, and the voids, are all being explicitly modeled. The 
ply thickness is constant for every specimen. The selection of what parameters were 
chosen to be randomly varied is included in a later discussion. 
 
Finite Element Analysis 
 

The RVEs were generated as images (like that of Figure 2) with Python code, 
which were then meshed with the open source software, OOF2 [11]. OOF2 allows 



the user to import an image and define the different materials by color selection. It 
then creates a mesh of a desired size with homogenous elements (each element has 
only one material associated with it). This mesh was then imported into commercial 
software, ABAQUS, for finite element analysis [12]. A combination of triangular 
and quadrilateral plane strain elements were used, to account for the in-plane 
thickness of the composite.  An example of the mesh can be found in Figure 3. The 
material properties assigned were determined by Mital, et al. [13] and are shown in 
Table I. The yarn/matrix interphase is not explicitly modeled in the present study. 
The tows are modeled as homogenous but orthotropic materials, with resultant 
properties based on the fiber, matrix, pores, and interphase in the tows. The matrix 
is assumed to be an isotropic material. 

In order to determine the effective elastic moduli and Poisson’s ratios of the 
RVE based on the finite element analysis, the relationships in Equations 1 and 2 
were used. This required three analyses for each specimen. Periodic boundary 
conditions were implemented for all analyses to simulate the repetition of the RVE 
[14]. The stiffness matrix [C] is found by first applying a finite strain, ε1, and zero 
strain in the other two directions (ε2 and ε3).  By volume averaging each of the three 
stresses (σ1, σ2, σ3), the first column of the stiffness matrix is found. This is repeated 
in a similar manner for the second and third column. For the analysis to obtain the 
third column, generalized plane strain (rather than plane strain) elements were used 
so that a finite strain could be applied, rather than zero strain.  

 
 

 
 
 
 

Figure 3: Example of finite element mesh of a RVE and coordinate system 
 

 
TABLE I: CONSTIUENT MATERIAL PROPERTIES 

 E1 (GPa) E2 (GPa) E3 (GPa) ν12 ν13 ν23 
Transverse Tow 106 106 259 0.21 0.21 0.18 

Longitudinal Tow 259 106 106 0.18 0.21 0.21 
Matrix 420 420 420 0.17 0.17 0.17 
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Selective Averaging Method  
 

The Selective Averaging Method is an analytical method for determining elastic 
constants that was proposed by Sankar and Marrey [9]. The method simply requires 
a RVE and knowledge of the constituent material properties and their location. For 
this approach, the RVE is divided into slices. The slices are subdivided into 
elements. Then, the elastic constants of the constituents are averaged by selecting 
either the isostress or isostrain condition, depending on which is the more 
appropriate assumption for the given level being accounted for. For example, iso-
strain is assumed when moving from the element level to the slice. This implies that 
every element within the slice has an equivalent strain. However, each slice can 
have a different strain. Then, from the slice to macroscale level, there is an isostress 
assumption in which every slice has an equivalent average stress. This method was 
shown to agree very well with FEA results for the 5HS weave that was used for 
comparison in their study. Further details can be found in Reference 9. 
 
Response Surfaces  
 

When it is desired to determine the response at a large number of data points, it 
is typical to perform analyses at a small set of data points, which are then fit with a 
polynomial response surface. The number of simulations needed is dependent on 
the number of variables, as well as the degree of the polynomial of your desired fit. 
Since all of the polynomials used in this work are linear, it is necessary to have at 
least one analysis per variable, plus one additional analysis for the constant term.  

For this work, a linear high-fidelity (hi-fi) response surface, which will be 
referred to as LFERS (Linear Finite Element Response Surface) was used to 
generate a fit to the finite element analyses. An example of this equation is shown 
in Equation 3, where c is a constant and x is a chosen variable. Note that this 
equation and the ones following represent the response surface if only three 
variables are used. When the dependence of the response on the design variables is 
complicated, a higher order polynomial or another nonlinear equation may be 
required for the response surface. The number of coefficients may then be high, and 
the required number of simulations not computationally affordable. On the other 
hand, if a low-fidelity model captures well the nonlinear behavior, the total 
response may be captured by a simple correction to the low-fidelity model. In this 
case, Correction Response Surfaces (CRS) are used to combine less accurate and 
computationally inexpensive low fidelity (lo-fi) models, with more accurate (but 
computationally expensive) high fidelity (hi-fi) models. CRSs can allow for 
acceptable accuracy at a small computational cost. There are two commonly used 
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CRSs. One is the multiplicative CRS (in which a ratio between the hi-fi and lo-fi 
analyses is used). It is only computationally affordable for this problem to use a 
linear CRS. This method will be referred to as the linear multiplicative CRS 
(LMCRS), and an example is shown in Equation 4. The other CRS is a linear low to 
high fidelity response surface (in which a CRS is made with the linear relationship 
between hi-fi and lo-fi results), and is shown in Equation 5. Note that the LCRS 
method does not explicitly account for the design variables, and therefore the 
number of constants in the equation does not change with the number of variables.   

 
                   1 1 2 2 3 3 4* * *hi fi results c x c x c x c− = + + +                                  (3)                                     

 

                   1 1 2 2 3 3 4* * *hi fi results c x c x c x c
lo fi results

− = + + +
−

                                (4) 

 
                      1 2*( )hi fi results c lo fi results c− = − +                                      (5) 

 
In the current work, 15 random variables were chosen as explained in the 

section to follow. For a linear response surface in 15 variables, a minimum of 16 
high fidelity models are necessary (one analysis for each constant). Thirty-two 
models were used for improved accuracy. For the selection of the variable values of 
the 32 FEA models, Latin Hypercube Sampling was used. This technique ensures 
representation of a realistic variability by generating non-repetitive samples that are 
evenly distributed in the design space. The computational burden for this number of 
high-fidelity analysis is high, creating a necessity for a low-fidelity analysis 
method. For the low fidelity SAM analysis, 1,000 models were analyzed. This 
number was chosen because with 1,000 samples and an expected standard deviation 
that is 10% of the mean, it is predicted that the mean and standard deviation will 
have an error of order 0.3 percent and 3.0%, respectively( the error are 
approximately the standard deviation divided by the square root of the number of 
samples). 

 
Selection of Variables and Statistics 
 

The parameters chosen to be randomly varied were selected based on whether 
or not statistical data was currently available for those parameters. It was desired to 
only randomize the parameters that had quantifiable randomness, with as little 
guess work involved as possible. The geometric parameters in which statistical data 
was available were transverse tow width (w), transverse tow height (h), and 
transverse tow spacing in the longitudinal direction (s). See Figure 4 for the 
definition of these variables within a RVE.  Other architectural parameters, such as 
tow spacing in the through thickness (“2”) direction and longitudinal tow amplitude 
(the difference between the maximum and minimum height of the longitudinal tow) 
are either dependent on the variables used, or were approximated based on visually 
fitting the geometry to the specimens. The variables that do not yet have statistical 
data were held constant. An issue that further complicates the problem is that the 
variables not only vary between the specimens, but they have a variation within 
each specimen as well. Therefore, each transverse tow is assigned an individual, but 



correlated tow width, tow height, and tow spacing. Since there are five tows in the 
RVE, this results in a total of fifteen variables (five tow widths, five tow heights, 
and five tow spacings).  

The random generation of the fifteen variables was based on the statistical data 
in three different specimens for which micrographs were available (similar to the 
one shown in Figure 1). Every tow width, tow height, and tow spacing were made 
available through image processing techniques [10]. Since it was desired to only 
model one 2D RVE of the composite (five transverse tows for a 5HS weave), the 
statistics were taken from the first five complete tows in each of the eight plies for 
each of the three specimens. The segment bounded in Figure 5 is an example of 
approximately where in the composite the statistics came from. This means that for 
each of the five tows, there were twenty-four data points to base the statistical 
distributions on (a total then, of 120 points). It was found from the 120 measures 
that the tow spacing and tow width had a normal distribution while the tow height 
had a Weibull distribution. These distributions were accounted for when generating 
random variables for each RVE. 

In addition to determining the type of distribution associated with these 
parameters, it was found that there was meaningful correlation between the tow 
spacing and tow width for each variable. For this reason, correlation coefficients 
were accounted for during the generation of variables. For calculation of correlation 
coefficients, 24 measurements could be used for each of the fifteen variables. 
Making use of correlation parameters ensured that inherent architecture variation 
due to the manufacturing process would be accounted for and the generation of 
unrealistic specimens would be minimized.  

 
 
 
 
 
 
 
 
 
 

Figure 4: Definition of the tow spacing, tow width, and tow height 
 
 
 

 
 

Figure 5: Image of segmented area used for statistics 
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RESULTS AND DISCUSSION 
 

The discussion below presents a comparison of how well aspects of the 
artificially generated models based on statistics compare to the actual specimens. 
Then, the results from the finite element analysis and the analytical method 
combined with the response surfaces are discussed. 
 
Comparison of Real Specimens to Artificially Generated Specimens 
 

A summary of the characteristics of the specimens generated for the three 
sample specimens from which the statistics were obtained is presented in Table II. 
Comparisons can be drawn between these characteristics, and those of the 
artificially generated parameters summarized in Tables III and IV. The most 
obvious aspect to point out is that the volume fractions for the voids are 
significantly different. This discrepancy was expected and is due to not accounting 
for imperfections in alignment of the plies (ply shifting). The  tow volume fractions 
therefore increase slightly to compensate for this loss in void volume fraction. In 
addition, the distribution of matrix is not uniform in the actual composite which 
could be another cause of the lower void volume fraction in the artificially 
generated specimens [13]. However, the standard deviations remain close to those 
of the three specimens.  

The architectural aspects compare better than the volume fractions. This is 
expected since the randomization was based on the statistics of the architectural 
parameters listed. The means and standard deviations compare exactly up to the 
third significant digit. However, the range of values explored in the artificial data is 
larger than that of the actual specimens. If statistics are taken from additional actual 
specimens, it is expected that the range of values will increase to more closely 
match that of the artificially generated specimens. Histograms that give a visual 
representation of the distribution of variables for the 1,000 specimens are shown in 
Figure 6. A normal distribution in red is shown on top of the histogram for 
reference. It is apparent that the tow width and tow spacing follow a normal 
distribution, while the tow height is closer to a Weibull distribution, as was 
designated while generating the variables. 

The correlation coefficients for the artificial and generated data were also 
compared. A few of the significantly correlated parameters (correlation parameter is 
great than 0.3) are as follows. Spacing three (the spacing between the third and 
fourth tow) was highly correlated to all of the others spacings with the exception of 
the final spacing. The second spacing was highly correlated to all of the tow widths 
that followed in sequence. The final two spacings are highly correlated as well. It 
was found that out of the twelve correlations parameters deemed significant, only 
two had notable errors of 10% and 13%. The rest of the errors associated with 
significant correlation coefficients were below 10%. It is likely that the spacing and 
width have some degree of correlation because when the composites are 
manufactured they are restricted to a certain width. Therefore, depending on the tow 
sizes, the spacing has to adjust to accommodate for all of the tows. The good 
agreement between artificially generated data and that of the actual data is due to 
the proper statistical distribution being accounted for, as well as the correlation 
coefficients. 



TABLE II: SUMMARY OF VOLUME FRACTION AND GEOMETRIC CHARACTERISTICS 
FOR 3 REAL SAMPLE SPECIMENS 

 % Void % Matrix % Tow w (mm) s (mm) h (mm) 
Max Value 8.70 33.80 60.80 1.31 1.33 0.16 
Min Value 6.90 32.30 57.50 0.88 1.11 0.09 

Range 1.80 1.50 3.30 0.43 0.22 0.07 
Mean Value 8.03 32.83 59.13 1.07 1.22 0.12 

St. Dev. 0.99 0.84 1.65 0.08 0.05 0.02 
 
 
 

TABLE III: SUMMARY OF VOLUME FRACTION AND GEOMETRIC CHARACTERISTICS 
FOR 32 SPECIMENS  

 % Void % Matrix % Tow w (mm) s (mm) h (mm) 
Max Value 4.29 31.58 71.10 1.30 1.41 0.17 
Min Value 1.33 27.13 66.31 0.78 1.06 0.08 

Range 2.96 4.45 4.79 0.52 0.34 0.09 
Mean Value 2.75 29.17 68.08 1.07 1.22 0.12 

St. Dev. 0.69 1.05 1.13 0.08 0.05 0.02 
 
 
 

TABLE IV: SUMMARY OF VOLUME FRACTION AND GEOMETRIC CHARACTERISTICS 
FOR 1000 SPECIMENS 

 % Void % Matrix % Tow w (mm) s (mm) h (mm) 
Max Value 6.34 34.17 75.81 1.43 1.42 0.19 
Min Value 0.02 24.17 60.40 0.75 1.04 0.09 

Range 6.32 10.00 15.41 0.67 0.38 0.10 
Mean Value 2.91 29.28 67.81 1.07 1.22 0.12 

St. Dev. 1.17 1.64 2.51 0.08 0.05 0.02 

 
 
 
 
 



 

 

  
 

Figure 6: Histograms of the distribution of the variables for 1,000 specimens 
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FEA, SAM, and Response Surfaces 
 

It was hypothesized that the best method to obtain accurate results at a low 
computational cost would be through the use of a correction response surface. The 
ratio between the response variables with FEA and SAM analysis was fairly 
consistent (the standard deviation was less than two percent of the mean) so it was 
hypothesized that fitting the ratio between the results of the two methods (LMCRS) 
would give the most desirable results. Two other methods were also used for 
comparison. One of those is the linear low to high fidelity response surface in 
which a linear fit was made from the SAM results to the FEA results (LCRS), with 
no geometric parameters taken into account explicitly. The final method was the 
linear high fidelity response surface, in which a response surface is fit to the FEA 
data only (LFERS). It was found that there was no valuable information gained 
from the implementation of the LCRS. Therefore, the discussion will be limited to 
the results from the LMCRS and LFERS.  

The coefficients in the response surface associated with each variable for the 
LMCRS and LFERS are displayed in Tables V and VI, respectively. They are the 
response surface coefficients multiplied by the range for the variable associated 
with them in order to account for the fact that some of the variables have different 
dimensions. The statistically significant coefficients (as measured by the t-statistic) 
are marked with an asterisk. An important aspect of these tables to note is that the 
response surface includes two additional variables that were not previously 
mentioned, matrix volume fraction (MVF) and tow volume fraction (TVF). Void 
volume fraction is not included because the coefficient associated with it is 
accounted for by the matrix and void volume fractions, since the sum of the volume 
fractions will always be one. Initially, the response surfaces were fit to only the 15 
variables that were manually being varied. However, the accuracy of the correction 
response surface was not satisfactory, and it was the found that the inclusion of 
volume fractions reduced the standard error substantially (by a factor of four).  
Even though the volume fractions are not explicitly varied as the architectural 
parameters are, it is obvious that the changes in the volume fraction significantly 
affect the mechanical properties in a way that is not accounted for by the 
architectural parameters alone, especially for the LMCRS.  

For the LMCRS, the matrix volume fraction plays the largest role in the 
determination of all of the moduli as seen in Table V. It is especially prominent for 
the in-plane moduli. The tow volume fraction is also significant for the moduli. 
However, the Poisson’s ratios depend less on the matrix volume fraction than the 
moduli, and more on the tow volume fraction. The dependence on the architectural 
parameters can also be extracted. The tow spacing and height is rather important for 
E1 as compared to the width. However, the other mechanical properties are more 
uniformly dependent on transverse tow height, width, and spacing. 

The results in Table VI reveal that for the FERS, the matrix and tow volume 
fractions are still important, but less so. This is likely due to the fact that in the 
calculations involved with SAM constituent properties are integrated to determine 
mechanical properties. Therefore, how much there is of each constituent is 
important. In other words, the architectural parameters influence the volume 
fractions, but the volume fractions ultimately influence the mechanical properties. 
When using the FERS surface, results from SAM are not used, and hence the 



dependence on volume fractions has less of an influence. Instead, the physical 
interactions between constituents’ size, shape, and spacing are being accounted for. 
The dependence on architectural parameters for both cases, however, is similar. The 
tow spacing and tow height remain the most important factors in the determination 
of E1. The dependence on architectural parameters for other mechanical properties 
is more even distributed.  

The importance of including all architectural parameters is further highlighted 
in Table VII. Another way in which the effect of the variables was investigated was 
to first generate 1,000 more specimens to be solved analytically. The new 
specimens, however, would fix the tow height at the average value, and only vary 
the tow spacing and tow width (leaving 10 variables). Correlation was still 
accounted for in the parameters that were not fixed. This was repeated two more 
times fixing the tow width and the tow spacing at their respective values. While the 
mechanical properties calculated through the analytical method contain some errors, 
the range of values can still serve as a basis of comparison. The percent difference 
in the maximum and minimum values for the response variables for the original 
1,000 cases when all fifteen variables were present are compared to the percent 
difference in the maximum and minimum values when a certain variable was fixed 
in Table VII. For example, the second column displays the percent difference in 
range of values calculated when height was held constant, while width and spacing 
were still allowed to vary. It becomes clear that randomizing all variables is 
important to get an acceptable range of values, but the transverse tow height is 
especially important. When tow height is given a uniform value, the range of values 
significantly decreases for all three response variables. The information in the table 
implies that it is important to account for the variation due to all fifteen random 
variables. 

Before analyzing the results, it is important to understand the quality of the 
response surfaces. To do so, cross validation was completed. Cross validation 
removes one point from the 32 analyses, and calculates a response surface based on 
the 31 remaining data points. It then calculates the result for the point removed 
based on the response surface, and compares that value to what this known point 
should have been. The calculations were done using a Surrogates Toolbox 
programmed for MATLAB [16]. The results for cross validation are shown in Table 
VIII. The first row is the cross validation errors when volume fractions (VFs) are 
not used and the second row is the cross validation errors when volume fractions 
are used. It is clear that using the volume fractions is important to obtaining a good 
quality fit for the LMCRS, which agrees with observations made from Table V. 
Even though the quality of the LMCRS improved, there is still a substantial error 
for E2.  

Table VIII also reveals that for some mechanical properties, the quality of the 
FERS actually decreases with the addition of volume fractions. Again, this is likely 
due to the fact that the dependence on volume fraction is more inter-related to the 
architectural parameters for FEA than it is for SAM. It’s possible that for the 
LMCRS, volume fractions must be included, while for FERS it may not be 
necessary. 

Another way in which the quality of the response surfaces was checked was to 
choose three specimens from the 1,000 generated specimens and analyze them 
using the finite element analysis. The results were then compared to those of the 



output according to various response surfaces. The three specimens were chosen 
such that one had the smallest void volume fraction (specimen 453, approximately 
0.02%), one had the largest void volume fraction (specimen 660, approximately 
6%), and one had a void volume fraction near the average (specimen 979, 
approximately 3%). The errors found when comparing each of the three response 
surface methods to the actual finite element results are summarized in Tables IX 
through XI. The corresponding illustrations of each specimen are shown in Figures 
7 through 9. A few of the errors associated with comparing the calculations 
according to the response surfaces to the FEA analysis are higher than desirable. 
Both the FERS and LMCRS have errors associated with them in such a way that 
makes it difficult to conclude whether or not one response surface is better than the 
other, especially since only three specimens are being compared.  

 
 

TABLE V: COEFFICIENTS BASED ON THE LMCRS 
 E1 E2 E3 ν12 ν13 ν23 

w1 -18 23 -36* 30 15 64 
w2 -7 47* -31* -66* 44* 59* 
w3 -3 34 -8 -46 34* 33 
w4 -13 43* -27* -76* 44* 60* 
w5  -2 35 -24* -3 22 72* 
s1 -43* -41 -24* 68* -33* -35 
s2 -49* -64* -19 91* -45* -48 
s3 -40* -4 -32* 43 -24* 7 
s4 -45* -42* -17* 33 -25* -35 
s5 -27* -27 -16* -3 -13 -31 
h1 -34* 72* -22* -67* 52* 89* 
h2 -33* 22 -21* 64* 18 60* 
h3 -52* 39 -25* -11 37* 67* 
h4 -44* 62* -37* -30 35* 109* 
h5 -55* 30 -31* 17 27 69* 

MVF -125* -86* -79* -0.2 0.3 -3 
TVF -39* -63* -53* 48* -32* -27 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



TABLE VI: COEFFICIENTS BASED ON THE FERS 
 E1 E2 E3 ν12 ν13 ν23 

w1 -66* 83 -91* 10 33 122 
w2 -33* 90* -80* -127* 85* 108* 
w3 -30 26 -22 -57 64* 53 
w4 -9 81* -69* -129* 82* 115* 
w5  -6 85 -65* -21 44 140* 
s1 -113* -111* -66* 152* -67* -70 
s2 -121* -120 -49 162* -87* -91 
s3 -86* -46 -86* 120* -53* 6 
s4 -81* -110* -44* 102* -54* -66 
s5 -61* -65 -41* 11 -27 -57 
h1 -92* 116* -59* -107* 100* 161* 
h2 -98* 50 -56* 102* 37 114* 
h3 -136* 69 -65* -20 71* 122* 
h4 -93* 130* -95* -63 69* 205* 
h5 -147* 63 -82* 21 52 128* 

MVF -57* -5 -13 -11 -21 -1 
TVF -54* -37 -1 50 -47* -32 

 
 
 
TABLE VII: PERCENT DIFFERENCE IN RANGE OF MAXIMUM AND MINIMUM VALUES 

ACCORDING TO SAM WHEN ALLOWING ALL 15 VARIABLES TO HAVE A RANDOM 
DISTRIBUTION VERSUS HOLDING SELECTED VARIABLES CONSTANT 

 Original  Uniform Height Uniform Width Uniform Spacing 
E1 14.4 1.64 14.53 18.11 
E2 13.95 3.43 11.49 15.33 
E3 7.13 5.23 3.41 6.47 
 
 
 
TABLE VIII: CROSS VALIDATION PERCENT ERRORS FOR RESONSE SURFACES 

  E1    E2    E3    
  FERS LMCRS FERS LMCRS FERS LMCRS 

VFs NOT included in 
Response Surface 0.52 2.7 1.9 2.2 0.37 1.3 

VFs included in 
Response Surface 0.46 0.7 2.1 1.6 0.45 0.48 

 
 

 
 

Figure 7: Specimen 453 
 
 

TABLE IX: SPECIMEN 453, SUMMARY OF RESULTS FOR RESPONSE SURFACES 
 E1  (GPa) E2  (GPa) E3  (GPa) ν12 ν13 ν23 

FEA 219 136 245 0.195 0.196 0.175 
LMCRS 226 136 241 0.221 0.193 0.181 
% Error  -3.19 0.29 1.83 -13.09 1.30 -3.16 
LFERS 218 144 240 0.211 0.195 0.182 
% Error  0.44 -5.64 1.85 -8.19 0.47 -3.89 



 
 

Figure 8: Specimen 660 
 
 

TABLE X: SPECIMEN 660, SUMMARY OF RESULTS FOR RESPONSE SURFACES 
 E1  (GPa) E2 (GPa) E3 (GPa) ν12 ν13 ν23 

FEA 241 120 268 0.214 0.179 0.140 
LMCRS 246 133 265 0.199 0.185 0.148 
% Error  -2.25 -10.74 0.99 6.88 -3.25 -5.53 
LFERS 248 129 266 0.203 0.185 0.147 
% Error  -3.09 -7.88 0.83 5.05 -3.25 -4.87 

 
 

 
 

Figure 9: Specimen 979 
 
 

TABLE XI: SPECIMEN 979, SUMMARY OF RESULTS FOR RESPONSE SURFACES 
 E1 (GPa) E2 (GPa) E3 (GPa) ν12 ν13 ν23 

FEA 237 126 257 0.204 0.185 0.149 
LMCRS 237 125 257 0.207 0.185 0.147 
% Error  -0.09 0.82 0.07 -1.40 0.09 1.56 
LFERS 238 125 257 0.207 0.185 0.147 
% Error  -0.35 0.67 0.04 -1.48 0.09 1.35 

 
 
Mechanical Properties 
 

A summary of the mechanical properties calculated with different methods are 
shown below in Tables XII through XVII. The mean values of the mechanical 
properties for various methods agree fairly well with one another, with the 
exception of E2 and ν23. The reason for this discrepancy is currently being 
investigated. The analytical method (SAM) accounts for voids by simply assigning 
the void area negligibly small mechanical properties. It is possible that unlike the 
finite element method, the effects of interaction between voids, and the effects of 
their size and shape are not being accounted for. This could highlight voids’ 
structural effects, which goes beyond “knocking down” constituent properties as 
has been done in the past. The discrepancy between values calculated with two 
different methods is an aspect that is ideally accounted for by a CRS. It should also 
be noted that it is not surprising for E2 to be significantly lower than the other 
elastic moduli. The highest variations in mechanical properties occur with E2 and 
ν23. These are similar effects that were seen in finite element results of full 
specimens, as well as in studies completed by others for voids in unidirectional 
fiber reinforced composites [5,15]. The standard deviations are slightly higher for 
the results with 1,000 analyses because there are more specimens generated, 
resulting in the variables themselves having a slightly larger range (as seen earlier 
in Tables III and IV). The standard deviation for the FERS is not as close to the 



original standard deviations as the LMCRS, which is likely because of the error in 
the fit. 

 
 

TABLE XII: SUMMARY OF E1 SOLVED WITH VARIOUS METHODS 

 32 
FEA 

32 with 
FERS 

32 SAM 
corrected 

with LMCRS 
1000 SAM 

Uncorrected 
1000 
FERS 

1000 SAM 
Corrected 

with LMCRS 
Mean (GPa) 236.8 236.8 236.8 239.2 238.2 238.2 

St. Dev. (GPa) 4.3 4.3 4.3 6.0 7.9 6.2 
Max (GPa) 245.2 245.0 244.7 257.0 266.5 260.6 
Min (GPa) 225.4 225.1 225.0 220.0 214.5 218.8 

Range (GPa) 19.8 19.9 19.7 37.0 52.0 41.8 
 
 

 
TABLE XIII: SUMMARY OF E2 SOLVED WITH VARIOUS METHODS 

 32 
FEA 

32 with 
FERS 

32 SAM 
corrected 

with LMCRS 
1000 SAM 

Uncorrected 
1000 
FERS 

1000 SAM 
Corrected 

with LMCRS 
Mean (GPa) 130.6 130.6 130.6 187.8 130.5 130.5 

St. Dev. (GPa) 3.9 3.6 3.7 4.3 4.8 4.4 
Max (GPa) 138.2 137.3 138.3 202.0 144.6 144.1 
Min (GPa) 123.2 123.2 123.6 173.8 113.5 116 

Range (GPa) 15.0 14.1 14.7 28.2 31.1 28.1 
 
 
 

TABLE XIV: SUMMARY OF E3 SOLVED WITH VARIOUS METHODS 

 32 
FEA 

32 with 
FERS 

32 SAM 
corrected 

with LMCRS 
1000 SAM 

Uncorrected 
1000 
FERS 

1000 SAM 
Corrected 

with LMCRS 
Mean (GPa) 256.8 256.8 256.8 259.0 257.1 257.1 

St. Dev. (GPa) 3.6 3.5 3.5 2.7 5.5 5.5 
Max (GPa) 266.3 265.2 265.1 268.7 279 278.6 
Min (GPa) 249.2 249.6 249.7 249.5 240.5 240.5 

Range (GPa) 17.1 15.6 15.4 19.2 38.5 38.1 
 
 
 

TABLE XV: SUMMARY OF ν12 SOLVED WITH VARIOUS METHODS 

 32 
FEA 

32 with 
FERS 

32 SAM 
corrected with 

LMCRS 
1000 SAM 

Uncorrected 
1000 
FERS 

1000 SAM 
Corrected 

with LMCRS 
Mean 0.206 0.206 0.206 0.182 0.205 0.205 

St. Dev. 0.004 0.004 0.004 0.001 0.005 0.006 
Max 0.214 0.214 0.214 0.185 0.219 0.228 
Min 0.197 0.197 0.197 0.179 0.191 0.184 

Range (GPa) 0.017 0.017 0.017 0.006 0.029 0.044 
 
 
 
 
 
 



TABLE XVI: SUMMARY OF ν13 SOLVED WITH VARIOUS METHODS 

 32 
FEA 

32 with 
FERS 

32 SAM 
corrected with 

LMCRS 
1000 SAM 

Uncorrected 
1000 
FERS 

1000 SAM 
Corrected 

with LMCRS 
Mean 0.187 0.187 0.187 0.194 0.187 0.186 

St. Dev. 0.003 0.003 0.003 0.001 0.003 0.003 
Max 0.192 0.192 0.192 0.198 0.196 0.195 
Min 0.182 0.181 0.181 0.189 0.175 0.176 

Range (GPa) 0.010 0.010 0.010 0.008 0.021 0.019 
 
 

TABLE XVII: SUMMARY OF ν23 SOLVED WITH VARIOUS METHODS 

 32 
FEA 

32 with 
FERS 

32 SAM 
corrected with 

LMCRS 
1000 SAM 

Uncorrected 
1000 
FERS 

1000 SAM 
Corrected 

with LMCRS 
Mean 0.155 0.155 0.155 0.184 0.155 0.155 

St. Dev. 0.006 0.005 0.005 0.001 0.008 0.008 
Max 0.167 0.167 0.167 0.187 0.182 0.181 
Min 0.142 0.143 0.143 0.182 0.129 0.130 

Range (GPa) 0.025 0.024 0.024 0.004 0.053 0.051 

 
 
CONCLUSIONS 
 

The goal of this work was to select an RVE with architectural parameters that 
could be varied to effectively represent the variation in the SiC/SiC composite, and 
develop a method in which the variability in mechanical properties could be 
predicted in a computationally efficient manner, while also gaining an 
understanding of what geometric parameters were influential in determining the 
mechanical properties. The method of artificially generating specimens by using 
statistical information from the micrographs of actual composite specimens works 
very well. The statistics of the real and artificially generated specimens are in 
agreement. In addition, the mechanical properties calculated for the real specimens 
and the artificially generated specimens do not differ greatly.  

In regards to determining the response surfaces, it was also found that in some 
cases, even if the volume fractions aren’t explicitly varied, it is still important to 
include their inherent variation in the correction response surface. While the 
uncertainty associated with the calculation of the mechanical properties could be 
reduced with an improvement in the response surface quality, it is clear that it is 
important to model the randomness of all of the variables used in this paper (and 
likely some additional ones) in order to capture a realistic and fully representative 
variation in mechanical properties.  
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